Histone deacetylase 6 inhibition compensates for the transport deficit in Huntington's disease by increasing tubulin acetylation.

نویسندگان

  • Jim P Dompierre
  • Juliette D Godin
  • Bénédicte C Charrin
  • Fabrice P Cordelières
  • Stephen J King
  • Sandrine Humbert
  • Frédéric Saudou
چکیده

A defect in microtubule (MT)-based transport contributes to the neuronal toxicity observed in Huntington's disease (HD). Histone deacetylase (HDAC) inhibitors show neuroprotective effects in this devastating neurodegenerative disorder. We report here that HDAC inhibitors, including trichostatin A (TSA), increase vesicular transport of brain-derived neurotrophic factor (BDNF) by inhibiting HDAC6, thereby increasing acetylation at lysine 40 of alpha-tubulin. MT acetylation in vitro and in cells causes the recruitment of the molecular motors dynein and kinesin-1 to MTs. In neurons, acetylation at lysine 40 of alpha-tubulin increases the flux of vesicles and the subsequent release of BDNF. We show that tubulin acetylation is reduced in HD brains and that TSA compensates for the transport- and release-defect phenotypes that are observed in disease. Our findings reveal that HDAC6 inhibition and acetylation at lysine 40 of alpha-tubulin may be therapeutic targets of interest in disorders such as HD in which intracellular transport is altered.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hdac6 Knock-Out Increases Tubulin Acetylation but Does Not Modify Disease Progression in the R6/2 Mouse Model of Huntington's Disease

Huntington's disease (HD) is a progressive neurodegenerative disorder for which there is no effective disease modifying treatment. Following-on from studies in HD animal models, histone deacetylase (HDAC) inhibition has emerged as an attractive therapeutic option. In parallel, several reports have demonstrated a role for histone deacetylase 6 (HDAC6) in the modulation of the toxicity caused by ...

متن کامل

HDAC6 Regulates Mitochondrial Transport in Hippocampal Neurons

BACKGROUND Tubulin is a major substrate of the cytoplasmic class II histone deacetylase HDAC6. Inhibition of HDAC6 results in higher levels of acetylated tubulin and enhanced binding of the motor protein kinesin-1 to tubulin, which promotes transport of cargoes along microtubules. Microtubule-dependent intracellular trafficking may therefore be regulated by modulating the activity of HDAC6. We ...

متن کامل

Highly potent and selective histone deacetylase 6 inhibitors designed based on a small-molecular substrate.

To find novel histone deacetylase 6 (HDAC6)-selective inhibitors and clarify the structural requirements for HDAC6-selective inhibition, we prepared thiolate analogues designed based on the structure of an HDAC6-selective substrate and evaluated the histone/alpha-tubulin acetylation selectivity by Western blot analysis. Aliphatic compounds 17b-20b selectively caused alpha-tubulin acetylation ov...

متن کامل

HDAC6 Inhibitor Blocks Amyloid Beta-Induced Impairment of Mitochondrial Transport in Hippocampal Neurons

Even though the disruption of axonal transport is an important pathophysiological factor in neurodegenerative diseases including Alzheimer's disease (AD), the relationship between disruption of axonal transport and pathogenesis of AD is poorly understood. Considering that α-tubulin acetylation is an important factor in axonal transport and that Aβ impairs mitochondrial axonal transport, we mani...

متن کامل

Hdac6 deletion delays disease progression in the SOD1G93A mouse model of ALS.

Defects in axonal transport are thought to contribute to the pathogenesis of neurodegenerative disease. Because α-tubulin acetylation facilitates axonal transport, inhibition of the α-tubulin deacetylating enzymes, histone deacetylase 6 (Hdac6) and silent information regulator 2 (Sirt2), is thought to be an interesting therapeutic strategy for these conditions. Amyotrophic lateral sclerosis (AL...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 27 13  شماره 

صفحات  -

تاریخ انتشار 2007